Confinement free energy of flexible polyelectrolytes in spherical cavities.
نویسندگان
چکیده
A weakly charged flexible polyelectrolyte chain in a neutral spherical cavity is analyzed by using self-consistent field theory within an explicit solvent model. Assuming the radial symmetry for the system, it is found that the confinement of the chain leads to creation of a charge density wave along with the development of a potential difference across the center of cavity and the surface. We show that the solvent entropy plays an important role in the free energy of the confined system. For a given radius of the spherical cavity and fixed charge density along the backbone of the chain, solvent and small ion entropies dominate over all other contributions when chain lengths are small. However, with the increase in chain length, chain conformational entropy and polymer-solvent interaction energy also become important. Our calculations reveal that energy due to electrostatic interactions plays a minor role in the free energy. Furthermore, we show that the total free energy under spherical confinement is not extensive in the number of monomers. Results for the osmotic pressure and mean activity coefficient for monovalent salt are presented. We demonstrate that fluctuations at one-loop level lower the free energy and corrections to the osmotic pressure and mean activity coefficient of the salt are discussed. Finite size corrections are shown to widen the range of validity of the fluctuation analysis.
منابع مشابه
Self-avoiding flexible polymers under spherical confinement.
We compute the free energy of confinement for a flexible self-avoiding polymer inside a spherical cavity. Accurate numerical results allow us to arbitrate between three competing scaling predictions. For moderate confinement, the free energy exhibits a power-law dependence on cavity size that is different from what is observed for planar and cylindrical confinement. At high monomer concentratio...
متن کاملInverted critical adsorption of polyelectrolytes in confinement.
What are the fundamental laws for the adsorption of charged polymers onto oppositely charged surfaces, for convex, planar, and concave geometries? This question is at the heart of surface coating applications, various complex formation phenomena, as well as in the context of cellular and viral biophysics. It has been a long-standing challenge in theoretical polymer physics; for realistic system...
متن کاملFree energy of a long semiflexible polymer confined in a spherical cavity.
The free energy and conformational properties of a wormlike chain confined inside a spherical surface are investigated. We show that in the weak-confinement limit, the wormlike chain model exactly reproduces the confinement properties of a Gaussian chain; in such a case the confinement entropy dominates the free energy; in the strong-confinement limit, the free energy is dominated by the bendin...
متن کاملStochastic resonance during a polymer translocation process.
We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and...
متن کاملTranslocation of polymers out of confined geometries
We consider the free energy of confinement for a flexible self-avoiding polymer inside a spherical cavity. Accurate numerical calculations allow us to arbitrate between competing scaling predictions. We find that, for moderate confinement, the free energy exhibits a power-law dependence on cavity size that is different from what is observed for planar and cylindrical confinement. At high monome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 128 18 شماره
صفحات -
تاریخ انتشار 2008